InterviewSolution
Saved Bookmarks
| 1. |
If `lim_(xrarr-1)(sin(x^3+bx^2+cx +d))/((sqrt(2+x)-1){log_e(x+2)}^2)` exists and is equal to l, then `b+d+l` is equal toA. 5B. 6C. 7D. 4 |
|
Answer» Correct Answer - B It is given that `lim_(xto-1)(sin(x^3+bx^2+cx +d))/((sqrt(2+x)-1){log_e(x+2)}^2)=l` `rArrlim_(xto-1)(sin(x^3+bx^2+cx +d))/((x+1)^3{(log_e(1+(x+1)))/((x+1))}^2)xx (sqrt(2+x+1)=l` `rArrlim_(xto-1)(sin(x^3+bx^2+cx +d))/((x^3+bx^2+cx +d))xx(1)/({(log_e(1+(x+1)))/((x+1))}^2)xx(x^3+bx^2+cx +d)/((x+1)^3)xx(sqrt(2+x+1)=l` `rArrlim_(xto-1)1xx(1)/((1)^2)xx(x^3+bx^2+cx +d)/((x+1)^3)xx2=l` `rArrlim_(xto-1)(x^3+bx^2+cx +d)/((x+1)^3)xx(l)/(2)` `rArrb=3,c=3,d=1 and l=2` `therefore b+d+l=3+1+2=6` |
|