InterviewSolution
Saved Bookmarks
| 1. |
If `log(a^3-b^3)-log3=3/2(log a+log b),` find the value of `(a/b)^3+(b/a)^3.` |
|
Answer» `log(a^3 - b^3) - log3 = 3/2( log a + log b)` `log((a^3-b^3)/3) = 3/2(log ab)` `log ((a^3-b^3)/3) = log (ab)^(3/2)` `(a^3- b^3)/3 = (ab)^(3/2)` `a^3 - b^3 = 3(ab)^(3/2)` eqn1 `(a/b)^3- 1 = 3(ab)^(3/2)` `(a/b)^3 = 1 + 3(a/b)^(3/2)` `1 - (b/a)^3 = (3(ab^(3/2)))/a^3` `1 - 3(b/a)^(3/2) = (b/a)^3` `(a/b)^3 + (b/a)^3 = 1 + 3(a/b)^(3/2) + 1 - 3(a/b)^(3/2)` `= 2 + 3 ((a^3 - b^3)/(ab)^(3/2))` `= 2 + 3 [(3(ab)^(3/2))/(ab)^(3/2)]` `= 2 + 3xx 3` `= 11` Answer |
|