1.

If matrix A = [1 2 3] , write AAT.

Answer»

We are given that,

A = [1 2 3]

We need to compute AAT

We know that the transpose of a matrix is a new matrix whose rows are the columns of the original. 

So, 

Transpose of matrix A will be given as

AT\( \begin{bmatrix} 1 \\[0.3em] 2 \\[0.3em] 3 \end{bmatrix}\)

Multiplying A by AT,

AAT = [1 2 3]\( \begin{bmatrix} 1 \\[0.3em] 2 \\[0.3em] 3 \end{bmatrix}\)

In multiplication of matrices,

[ a11 a12 a13]\( \begin{bmatrix} b_{11} \\[0.3em] b_{21} \\[0.3em] b_{31} \end{bmatrix}\)

Dot multiply the matching members of 1st row of first matrix and 1 st column of second matrix and then sum up.

(a11 a12 a13)(b11 b21 b31) = a11 × b11 + a12 × b21 + a13 × b31

So, 

(1 2 3)(1 2 3) = 1 × 1 + 2 × 2 + 3 × 3 

⇒ (1 2 3)(1 2 3) = 1 + 4 + 9 

⇒ (1 2 3)(1 2 3) = 14

Thus,

  [1 2 3]\( \begin{bmatrix} 1 \\[0.3em] 2 \\[0.3em] 3 \end{bmatrix}\)= [14]



Discussion

No Comment Found

Related InterviewSolutions