1.

If `mgt1` and `ninN`, such that `1^(m)+2^(m)+3^(m)+...+n^(m)gtn((n+1)/(k))^(m)` Then, k=A. 2B. nC. mD. 1

Answer» Correct Answer - A
For `mgt1,` we have
`A.M. "of mth powers"gt"mth power of "A.M.`
`:." "(1^(m)+2^(m)+3^(m)+...+n^(m))/(n)gt((1+2+3...+n)/(n))^(m)`
`implies" "(1^(m)+2^(m)+3^(m)+n^(m))/(n)gt((n+1)/(2))^(m)`
`implies" "1^(m)+2^(m)+...+n^(m)gtn((n+1)/(2))^(m)`
Hence, k=2.


Discussion

No Comment Found