1.

If a, b, c are positive integers, then `((a^(2)+b^(2)+c^(2))/(a+b+c))^(a+b+c)gta^(x)b^(y)c^(z)`, thenA. `x=a, y=b, z=c`B. `x=b, y=a, z=c`C. `x=(1)/(a),y=(1)/(b),z=(1)/( c )`D. `x=y=z=1`

Answer» Correct Answer - A
We know that
Weighted `A.M.gt"Weighted G.M."`
`implies" "(a.a+b.b+c.c)/(a+b+c)gt(a^(a)b^(b)c^(c))^((1)/(a+b+c))`
`implies((a^(2)+b^(2)+c^(2))/(a+b+c))^(a+b+c)gta^(a)b^(b)c^(c)" "...(i)`
Hence, x=a, y=b, z=c.


Discussion

No Comment Found