1.

If `x_(n)gt1` for all `n in N`, then the minimum value of the expression `log_(x_(2))x_(1)+log_(x_(3))x_(2)+...+log_(x_(n))x_(n-1)+log_(x_(1))x_(n)` is

Answer» Correct Answer - D
Using `A.M.geG.M.`, we have
`(log_(x_(2))x_(1)+log_(x_(3))x_(2)+...+log_(x_(n))x_(n-1)+log_(x_(1))x_(n))/(n)`
`ge(log_(x_(2))x_(1).log_(x_(3))x_(2)....log_(x_(1))x_(n))^(1//n)`
`implies" "log_(x_(2))x_(1)+log_(x_(3))x_(2)+...+log_(x_(1))x_(n)gen`
Hence, the minimum value of the given expression is n and it attains this value when `x_(1)=x_(2)=......=x_(n)`.


Discussion

No Comment Found