InterviewSolution
Saved Bookmarks
| 1. |
If momentum, time and energy were chosen as basic quantities, find dimensions of (a) mass and (b) force. |
|
Answer» The dimension for momentum, time and energy are `p = [MLT^(-1)]` `t = [T]` `E = [ML^(2) T^(-2)]` (a) `m prop p^(a) t^(b) E^(c )` `M prop [MLT^(-1)]^(a) [T]^(b) [ML^(2) T^(-2)]^(c )` `M^(1) L^(0) T^(0) prop M^(a + c) L^(a + 2c) T^(-a + b - 2c)` Comparing power of `M, L` and `T` `a + c = 1` `a + 2c = 0` `-a + b - 2c = 0` Solving we get `C = - 1, a = 2, b = 0` `m prop p^(2) E^(-1)` (b) `F prop p^(a) t^(b) E^(c )` `MLT^(-2) prop [MLT^(-1)]^(a) [T]^(b) [ML^(2) T^(-2)]^(c)` `M^(1) L^(1) T^(-2) prop M^(a + c) L^(a + 2c) T^(- a + b + 2c)` Comparing power of `M, L` and `T` `a + c = 1` `a + 2c = 1` `-a + b - 2c = -2` `c = 0, a = 1, b = - 1` `F prop p t^(-1)` |
|