1.

If ‘n’ be any positive integer, then n (n + 1) (2n + 1) is(a) an odd integer (b) an integral multiple of 6 (c) a perfect square (d) None of these

Answer»

Answer: (B) an integral multiple of 6 

When n = 1, n(n+1)(2n+1) = (1) (2) (3) = 6, which is an integral multiple of 6. 

It is neither an odd integer nor a perfect square. 

Using the principle of mathematical induction, we shall now show that the expression n(n + 1)(2n + 1) is an integral multiple of 6 ∀ n ∈ N. 

Assume T(n) = n(n+1)(2n+1) = 6x where x∈N. 

Basic Step: 

T(1) is true as shown above. 

Induction Step: 

Let T(k) be true for all k∈N. 

⇒ k (k +1) (2k +1) = 6x, where x∈N. .....(i) 

For T(k + 1), we replace k by (k + 1) in the given expression, i.e., 

T(k + 1) = (k + 1) (k + 2) (2 (k + 1) + 1) 

= (k + 1) (k + 2) ((2k + 1) + 2) 

= (k + 1) (k + 2) (2k + 1) + 2 (k + 1) (k + 2) 

= k (k + 1) (2k + 1) + 2 (k + 1) (2k + 1) + 2 (k + 1) (k + 2) 

= k (k + 1) (2k + 1) + 2 (k + 1) [(2k + 1) + (k + 2)] 

= 6x + 2(k + 1)(3k + 3) 

= 6x + 6(k + 1)2 

= 6 (x + (k + 1)2) = 6 × a positive integer 

∴ T(k) is true ⇒ T(k + 1) is true. 

∴ T(n) is true for all n∈N



Discussion

No Comment Found