InterviewSolution
| 1. |
Prove by the principle of mathematical induction: 12 + 22 + 32 + … + n2 = [n(n + 1) (2n + 1)]/6 |
|
Answer» Let us considering P (n) = 12 + 22 + 32 + … + n2 = [n(n + 1) (2n + 1)]/6 For, n = 1 P (1) = [1(1 + 1) (2 + 1)]/6 1 = 1 P (n) is true for n = 1 Suppose P (n) is true for n = k, therefore P (k): 12 + 22 + 32 + … + k2 = [k(k + 1) (2k + 1)]/6 Let’s us check for the P (n) = k + 1, therefore P(k) = 12 + 22 + 32 + – – – – – + k2 + (k + 1)2 = [k + 1 (k + 2) (2k + 3)]/6 = 12 + 22 + 32 + – – – – – + k2 + (k + 1)2 = [k + 1 (k + 2) (2k + 3)]/6 + (k + 1)2 = (k +1) [(2k2 + k)/6 + (k + 1)/1] = (k +1) [2k2 + k + 6k + 6]/6 = (k +1) [2k2 + 7k + 6]/6 = (k +1) [2k2 + 4k + 3k + 6]/6 = (k +1) [2k(k + 2) + 3(k + 2)]/6 = [(k +1) (2k + 3) (k + 2)] / 6 P (n) is true for n = k + 1 Thus, P (n) is true for all n ∈ N. |
|