1.

The distributive law from algebra states that for real numbers c, a1 and a2, we have c(a1 + a2) = ca1 + ca2 Use this law and mathematical induction to prove that, for all natural numbers, n ≥ 2, if c, a1, a2, …... an are any real numbers, then c(a1 + a2 +…+ an) = ca1 + ca2 +…+ can.

Answer»

Let P(n):c(a1+a2+…+an) = ca1+ca2+…+can ,for all natural 

numbers, n ≥ 2. 

Step1: For n=2, 

P(2) 

LHS= c(a1 + a2

RHS= c a1 + ca2 

As, it is given that c(a1 + a2) = c a1 + ca

Thus, P(2) is true. 

Step2: For n=k, 

Let P(k) be true 

So, c(a1+a2+…+ak ) = ca1+ca2+…+cak 

Now, we need to show P(k+1) is true whenever P(k) is true.

P(k+1): 

LHS= c(a1+a2+…+aK+ak+1

=c[(a1+a2+…+aK)+ak+1

=c(a1+a2+…+aK)+cak+1 

=ca1+ca2+…+caK+cak+1 

= RHS 

Thus, P(k+1) is true, so by mathematical induction P(n) is true.



Discussion

No Comment Found