1.

If `n in N`, then `121^n- 25^n + 1900^n – (-4)^n` is divisible byA. 1904B. 2000C. 2002D. 2006

Answer» Correct Answer - B
n `in` N,
`121^(n)-25^(n)+1900^(n)-(-4^(n))`
Let us substitute n = 1
We get, `(121)^(1)-(25)^(1)+(1900)^(1)-(-4^(1))`
`=121 - 25 + 1900 + 4
`=2025 - 25`
`=2000`
So, given expression is divisible by 2000


Discussion

No Comment Found