

InterviewSolution
Saved Bookmarks
1. |
If n is an odd integer greater than or equal to 1, then the value of `n^3 - (n-1)^3 + (n-1)^3 - (n-1)^3 + .... + (-1)^(n-1) 1^3`A. `((n+1)^(2)(2n-1))/(4)`B. `((n-1)^(2)(2n-1))/(4)`C. `((n+1)^(2)(2n+1))/(4)`D. none of these |
Answer» Correct Answer - A We have, `n^(3)-(n-1)^(3)+(n-2)^(3)+ . . . . . . +(-1)^(n-1)1^(3)` `=1^(3)-2^(3)+3^(3)-4^(3)+ . . .. +n^(3)" "[because" n is odd"]` `=[1^(3)+2^(3)+3^(3)+4^(3)+ . . . +n^(3)]-2[2^(3)+4^(4)+ . . . .+(n-1)^(3)]` `={(n(n+1))/(2)}^(2)-2^(4){1^(3)+2^(3)+ . . . . +((n-1)/(2))^(3)}` `={(n(n+1))/(2)}^(2)-16{(1)/(2)((n-1)/(2))((n-1)/(2))((n-1)/(2)+1)}^(2)` `={(n(n+1))/(2)}^(2)-(1)/(4){(n+1)(n-1)}^(2)` `=((n+1)^(2))/(4){n^(2)-(n-1)^(2)}=((2n-1)(n+1)^(2))/(4)` |
|