1.

If n is an odd integer, then show that n2 – 1 is divisible by 8.

Answer»

We know that any odd positive integer n can be written in form 4q + 1 or 4q + 3.

So, according to the question,

When n = 4q + 1,

Then n2 – 1 = (4q + 1)2 – 1 = 16q2 + 8q + 1 – 1 = 8q(2q + 1), is divisible by 8.

When n = 4q + 3,

Then n2 – 1 = (4q + 3)2 – 1 = 16q2 + 24q + 9 – 1 = 8(2q2 + 3q + 1), is divisible by 8.

So, from the above equations, it is clear that, if n is an odd positive integer

n2 – 1 is divisible by 8.

Hence Proved.



Discussion

No Comment Found