InterviewSolution
Saved Bookmarks
| 1. |
If non-zero vectors `veca and vecb` are equally inclined to coplanar vector `vecc`, then `vecc` can beA. `(|a|)/(|a|=2|b|)a+(|b|)/(|a|+|b|)b`B. `|b|/(|a|+|b|)a+|a|/(|a|+|b|)b`C. `(|a|)/(|a|+|b|)a+(|b|)/(|a|+2|b|)b`D. `(|b|)/(2|a|+|b|)a+(|a|)/(2|a|+|b|)b` |
|
Answer» Correct Answer - B::D Since, a and b are equally inclined to c, therefore c must be of the form `t((a)/(|a|)+(b)/(|b|))` Now, `(|b|)/(|a|+|b|)a+(|a|)/(|a|+|b|)b=(|a||a|)/(|a|+|a|)((a)/(|a|)+(b)/(|b|))` Also, `(|b|)/(2|a|+|b|)a+(|a|)/(2|a|+|b|)b=(|a||b|)/(2|a|+|b|)((a)/(|a|)+(b)/(|b|))` Other two vectors cannot be written in the form `t((a)/(|a|)+(b)/(|b|))`. |
|