1.

If `overset(to)(V) = 2oveset(to)(i) + overset(to)(j) - overset(to)(k) " and " overset(to)(W) = overset(to)(i) + 3overset(to)(k) .` if `overset(to)(U)` is a unit vectors then the maximum value of the scalar triple product `[overset(to)(U) , overset(to)(v) , overset(to)(W)]` isA. `(-1)/(sqrt(59))`B. `sqrt(10) + sqrt(6)`C. `sqrt(59)`D. `sqrt(60)`

Answer» Correct Answer - C
Given `vec( V) = 2hat(i) + hat(j) - hat(k) " and " vec(W) = hat(i) + 3hat(k)`
`[vec(U)vec(V) vec(W)] = vec(U) . [(2hat(i) + hat(j) -hat(k)) xx (hat(i) + 3hat(k))]`
`=vec(U) .(3hat(i) -7hat(j) - hat(k)) = |vec(U)||3hat(i) - 7 hat(j) - hat(k)|` cos 0
Which is maximum if angle between `vec(U) " and " 3hat(i) - 7hat(j) - hat(k) `
is 0 and maximum value
`+|3hat(i) -7hat(j) - hat(k)|= sqrt(59)`


Discussion

No Comment Found

Related InterviewSolutions