1.

If P(n) is the statement “n(n + 1) is even”, then what is P(3)? 1 + 2 + 22 + … + 2n = 2n + 1 – 1 for all n ϵ N

Answer»

Let P(n) = 1 + 2 + 22 + … + 

P(n): 1 + 2 + 22 + … + 2n = 2n + 1 – 1 for all n ϵ N 

Step1: 

P(1) = 1 = (2) – 1 = 1 

Thus, P(n) is equal to 2 n + 1 – 1 for n = 1 

Step2: 

Let, P(m) be equal to 2m + 1 – 1 

Then, 1 + 2 + 22 + … + 2m = 2m + 1 – 1 

Now, we need to show that P(m+1) is true whenever P(m) is true. 

P(m+1) = 1 + 2 + 22 + … + 2m + 2m + 1 

= 2m + 1 – 1 + 2m + 1 

= 2.2m + 1 –1 

= 2m + 2 – 1 

Thus, P(m+1) is true. 

So, by the principle of mathematical induction, P(n) is true for all nϵN.



Discussion

No Comment Found