 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | If P(n) is the statement “n(n + 1) is even”, then what is P(3)? 1×1! + 2×2! + 3×3! +…+ n×n! = (n + 1)! – 1 for all nϵ N. | 
| Answer» Let P(n) = 1×1! + 2×2! + 3×3! +…+ n×n P(n): 1×1! + 2×2! + 3×3! +…+ n×n! = (n + 1)! – 1 for all nϵ N Step1: P(1) = 1×1! = (2)! – 1 = 1 Thus, P(n) is equal to (n + 1)! – 1 for n = 1 Step2: Let, P(m) be equal to (m + 1)! – 1 Then, 1×1! + 2×2! + 3×3! +…+ m×m! = (m + 1)! – 1 Now, we need to show that P(m+1) is true whenever P(m) is true. P(m+1) = 1×1! + 2×2! + 3×3! +…+ m×m! + (m+1)×(m+1)! = (m+1)! – 1 + (m+1)×(m+1)! = (m+1)!(m+1+1) – 1 = (m+1)!(m+2) – 1 = (m+2)! – 1 Thus, P(m+1) is true. So, by the principle of mathematical induction, P(n) is true for all nϵN. | |