1.

If `p(x)=(1+x^2+x^4++x^(2n-2))//(1+x+x^2++x^(n-1))`is a polomial in `x`, then find possible value of `ndot`

Answer» Correct Answer - n is odd
`p(x)=((1-x^(2n))/(1-x^(2)))((1-x)/(1-x^(n))=(1+x^(n))/(1+x))`
As p(x) is a polynomial , x=-1 must be a zero of `1+x^(n)`, i.e., `1+(-1)^(n)=0`. Hence, n is odd.


Discussion

No Comment Found