1.

If \(\rm cosec\;\theta = \frac {13}{12}\), then the value of \( \frac{{2\sin\theta - 3\cos\theta }}{{4\sin\theta - 9\cos\theta }}\) is:1. 32. 43. 14. 2

Answer» Correct Answer - Option 1 : 3

Given:

cosec θ = 13/12

Forumula used:

H = hypotenuse, P = perpendicular, B = base

H2 = P2 + B2

cosecθ = H/P, sinθ = P/H, cosθ = B/P

Calculation:

⇒ cosec θ = 13/12 = H/P

⇒ H = 13, P = 12, B2 = H2 – P2

⇒ B2 = 132 – 122 = 52

⇒ B = 5

⇒ sinθ = 12/13, cosθ = 5/13, and cosec θ = 13/12

putting the value of sinθ and cosθ in \( \frac{{2sin\theta - 3cos\theta }}{{4sin\theta - 9cos\theta }}\)

⇒ \(\frac{{2 \times \frac{{12}}{{13}} - 3 \times \frac{5}{{13}}}}{{4 \times \frac{{12}}{{13}} - 9 \times \frac{5}{{13}}}}\)

⇒ 3

∴ The value of \( \frac{{2sin\theta - 3cos\theta }}{{4sin\theta - 9cos\theta }}\) is 3.



Discussion

No Comment Found

Related InterviewSolutions