InterviewSolution
Saved Bookmarks
| 1. |
If \(\rm cosec\;\theta = \frac {13}{12}\), then the value of \( \frac{{2\sin\theta - 3\cos\theta }}{{4\sin\theta - 9\cos\theta }}\) is:1. 32. 43. 14. 2 |
|
Answer» Correct Answer - Option 1 : 3 Given: cosec θ = 13/12 Forumula used: H = hypotenuse, P = perpendicular, B = base H2 = P2 + B2 cosecθ = H/P, sinθ = P/H, cosθ = B/P Calculation: ⇒ cosec θ = 13/12 = H/P ⇒ H = 13, P = 12, B2 = H2 – P2 ⇒ B2 = 132 – 122 = 52 ⇒ B = 5 ⇒ sinθ = 12/13, cosθ = 5/13, and cosec θ = 13/12 putting the value of sinθ and cosθ in \( \frac{{2sin\theta - 3cos\theta }}{{4sin\theta - 9cos\theta }}\) ⇒ \(\frac{{2 \times \frac{{12}}{{13}} - 3 \times \frac{5}{{13}}}}{{4 \times \frac{{12}}{{13}} - 9 \times \frac{5}{{13}}}}\) ⇒ 3 ∴ The value of \( \frac{{2sin\theta - 3cos\theta }}{{4sin\theta - 9cos\theta }}\) is 3. |
|