Saved Bookmarks
| 1. |
If `sec((x+y)/(x-y))=a^(2),"then "(d^(2)y)/(dx^(2))=......`A. yB. xC. `(y)/(x)`D. 0 |
|
Answer» Correct Answer - C `sec((x+y)/(x-y))=a^(2)` `rArr" "(x+y)/(x-y)=sec^(-1)(a^(2))` Differentiating w.r.t. x, we get `(x-y)(1+(dy)/(dx))-(x+y)(1-(dy)/(dx))=0` `rArr" "x=y+(x-y)(dy)/(dx)-x-y+(x+y)(dy)/(dx)=0` `rArr (dy)/(dx)(x-y+x+y)=2y` `rArr (dy)/(dx)=(2y)/(2x)` `rArr (dy)/(dx)=(y)/(x)` |
|