InterviewSolution
Saved Bookmarks
| 1. |
If sec2 θ + tan2 θ = 3 then find the value of cot θ. |
|
Answer» Correct Answer - Option 2 : 1 Concept: 1 + tan2 θ = sec2 θ sec2 θ - 1 = tan2 θ Calculation: Given: sec2 θ + tan2 θ = 3 To Find: Value of sec θ sec2 θ + tan2 θ = 3 Subtracting 1 both sides, we get ⇒ sec2 θ + tan2 θ - 1 = 3 - 1 ⇒ tan2 θ + tan2 θ = 2 (∵ sec2 θ - 1 = tan2 θ) ⇒ 2tan2 θ = 2 ⇒ tan2 θ = 1 ∴ tan θ = 1 Now, cot θ = \(\rm \frac {1}{\tan \theta} = \frac 1 1 = 1\) |
|