

InterviewSolution
Saved Bookmarks
1. |
If `Sigma_(r=1)^(n) cos^(-1)x_(r)=0, then Sigma_(r=1)^(n) x_(r)` equals |
Answer» We know that `0lecos^(-1)x_(r )lepi,r=1,2,.n` `therefore underset(r=1)overset(n)Sigma cos^(-1) x_(r ) =0` `rarr cos^(-1)x_(r ) =0 for r=1,2..n` `rarr cos^(-1)x_(r)=0 for r=1,2..n` `rarr x_(r ) =1 for r=1,2,…n ` `therefore underset(r=1)overset(n)Sigma x_(r )=underset(r=1)overset(n)Sigma1=n` |
|