1.

If `sin^(-1)a+sin^(-1)b+sin^(-1)c=pi,`then `asqrt(1-a^2)+bsqrt(1-b^2)+csqrt(1-c^2)`is equal to`a+b+c`(b) `a^2b^2c^2``2a b c`(d) `4a b c`A. a+b+cB. `a^(2)b^(2)c^(2)`C. 2abcD. 4abc

Answer» Correct Answer - C
Let `A=sin^(-1)a,B=sin^(-1)b` and `C=sin^(-1)C`
we have `A+B+C=pi`.
`asqrt(1-a^(2))+bsqrt(1-b^(2))+csqrt(1-c^(2))`
`=(1)/(2)(sin 2A+sin2B+sin2C)`
`=(1)/(2)(4sin A sin B sin C)=2abc`.


Discussion

No Comment Found

Related InterviewSolutions