1.

If sin (α - β) = 2√2/3 and cosec (α + β) = 2√2/3 then find the value of tan (α2 – β2)?1. tan 8/92. tan 93. tan 124. tan 15

Answer» Correct Answer - Option 1 : tan 8/9

Given:

Sin (α - β) = 2√2/3 and cosec (α + β) = 2√2/3

Concept Used:

Basic concept of trigonometric ratio and identities

We know that

2 – β2) = (α - β) × (α + β)

sin -1a × cosec -1a = 1

Calculation:

It is given that sin (α - β) = 2√2/3

∴ (α - β) = sin -1 2√2/3      ---(1)

And cosec (α + β) = 2√2/3

∴ (α + β) = cosec -1 2√2/3      ---(2)

By multiplying equation (1) and (2)

∴ (α - β) × (α + β) = sin -1 2√2/3 × cosec -1 2√2/3

⇒ (α2 – β2) = 8/9

Now, tan (α2 – β2) = tan 8/9

Hence, option (1) is correct



Discussion

No Comment Found

Related InterviewSolutions