InterviewSolution
Saved Bookmarks
| 1. |
If sin (α - β) = 2√2/3 and cosec (α + β) = 2√2/3 then find the value of tan (α2 – β2)?1. tan 8/92. tan 93. tan 124. tan 15 |
|
Answer» Correct Answer - Option 1 : tan 8/9 Given: Sin (α - β) = 2√2/3 and cosec (α + β) = 2√2/3 Concept Used: Basic concept of trigonometric ratio and identities We know that (α2 – β2) = (α - β) × (α + β) sin -1a × cosec -1a = 1 Calculation: It is given that sin (α - β) = 2√2/3 ∴ (α - β) = sin -1 2√2/3 ---(1) And cosec (α + β) = 2√2/3 ∴ (α + β) = cosec -1 2√2/3 ---(2) By multiplying equation (1) and (2) ∴ (α - β) × (α + β) = sin -1 2√2/3 × cosec -1 2√2/3 ⇒ (α2 – β2) = 8/9 Now, tan (α2 – β2) = tan 8/9 Hence, option (1) is correct |
|