InterviewSolution
Saved Bookmarks
| 1. |
If \(\sin A = \dfrac{15}{17}\) and \(\sin B = \dfrac{7}{25}\) , then sin (A - B) =?A. \(\dfrac{304}{425}\)B. \(\dfrac{416}{425}\)C. \(\dfrac{297}{425}\)D. \(\dfrac{87}{425}\)1. A2. C3. D4. B |
|
Answer» Correct Answer - Option 1 : A Given: \(\sin A = \dfrac{15}{17}\) and \(\sin B = \dfrac{7}{25}\) Formula used: sin(A - B) = sinAcosB - cosAsinB Calculation: \(\sin A = \dfrac{15}{17}\), then \(\cos A = \dfrac{8}{17}\) \(\sin B = \dfrac{7}{25}\), then \(\cos B = \dfrac{24}{25}\) sin(A - B) = sinAcosB - cosAsinB ⇒ (15/17) × (24/25) - (8/17) × (7/25) ⇒ (72/85) - (56/425) ⇒ (360 - 56)/425 ⇒ 304/425 ∴ The value of sin(A - B) is 304/425. |
|