1.

If `sin alpha and cos alpha` are the roots of the equation `ax^(2)-bx-1=0`, then find the relation between a and b.

Answer» The given equation is `ax^(2)-bx-1=0`.
Here, `a=a,b=-b and c=-1`.
`sin alpha + cos alpha=(-b)/(a)=(-(-b))/(a)=(b)/(a)`
`sin alpha * cos alpha=(c)/(a)=(-1)/(a)`.
Consider,
`sin alpha+ cos alpha=(-b)/(a)`
Squaring on both sides,
`(sin alpha+ cos alpha)^(2)=((-b)/(a))^(2)`
`=1+2((-1)/(a))=(b^(2))/(a^(2))`
`=1-(b^(2))/(a^(2))=(2)/(a)`
`:. a^(2)-b^(2)=2a`


Discussion

No Comment Found