InterviewSolution
Saved Bookmarks
| 1. |
If \(\sin x = \frac{3}{5}\), 0 ≤ x ≤ 90º, then the value of \(\cot x.\sec x\) is:1. \(\frac{5}{3}\)2. \(\frac{3}{5}\)3. \(\frac{4}{5}\)4. \(\frac{3}{4}\) |
|
Answer» Correct Answer - Option 1 : \(\frac{5}{3}\) Given: Sinx = 3/5 Formula Used: sinθ = perpendicular/hypotenuse cosθ = Base/hypotenuse cotθ = cosθ/sinθ Calculation: cotx × secx = (cosx/sinx) × 1/cosx = 1/sinx ⇒ cotx × secx = 1/(3/5) = 5/3 ∴ The value of \(\cot x.\sec x\) is 5/3 |
|