InterviewSolution
Saved Bookmarks
| 1. |
If `sinA-cosA=(sqrt(3)-1)/(2)`, then the value of `sinA.cosA` isA. `(1)/(sqrt(3))`B. `(sqrt(3))/(2)`C. `(1)/(4)`D. `(sqrt(3))/(4)` |
|
Answer» Correct Answer - d `sinA-cosA=(sqrt(3)-1)/(2)` Shotcut method:- Put `theta=60^(@)` `rArrsin60^(@)-cos60^(@)=sqrt(3)/(2)` `rArrsqrt(3)/(2)-(1)/(2)=sqrt(3-1)/(2)` `rArr(sqrt(3)-1)/(2)=(sqrt(3)-1)/(2)` (Mathced) Hence `SinA.cosA` `sin60^(@).cos60^(@)` `rArrsqrt(3)/(2)xx(1)/(2)=sqrt(3)/(4)` `sinA-cosA=(sqrt(3)-1)/(2)` Squaring both side, `rArrsin^(2)A+cos^(2)A-3sinAcosA` `=((sqrt(3)-1)/(2))^(2)` `rArr1-2sinA cosA=(3+1-2sqrt(2))/(4)` `rArr2sinA cosA=101((2-sqrt(3)))/(4)` `rArr2sinA.cosA=(2-2+sqrt(3))/(2)` `sinA.cosA=sqrt(3)/(4)` |
|