InterviewSolution
Saved Bookmarks
| 1. |
If `sinalpha+cosbeta=2,(0^(@) le beta lt alpha90^(@))`, then `sin((2alpha+beta)/(3))=?`A. `sin((alpha)/(2))`B. `cos((alpha)/(3))`C. `sin((alpha)/(3))`D. `cos((2alpha)/(3))` |
|
Answer» Correct Answer - b `sinalpha+cos beta= 2` shortest method put, `alpha=90^(@),beta=0^(@)` `sin90^(@)+cos0^(@)=2` `1+1=2` 2=2matched So, `alpha=90^(@),beta=0^(@)` `rArrsin((2alpha+beta)/(3))^(2)` `=sin((2xx90+0)/(3))^(2)` `=sin((180)/(3))^(2)` `=sin60^(@)=cos30^(@)=sqrt(3)/(2)` Take `cos(alpha)/(3)=cos(90^(@))/(2)` `=cos30^(@)` So, this is answer |
|