InterviewSolution
Saved Bookmarks
| 1. |
If `sqrt((1+i)/(1-i))=(a+ib)` then show that `(a^(2)+b^(2))=1`. |
|
Answer» We have `(a+ib)=sqrt((1+i)/(1-i))=(sqrt(1+i))/(sqrt(1-i))xx(sqrt(1+i))/(sqrt(1+i))=((1+i))/(sqrt(1-i^(2)))` `=((1+i))/(sqrt(2))=((1)/(sqrt(2))+(1)/(sqrt(2))i)` `rArr" "|a+ib|^(2)=((1)/(sqrt(2)))^(2)+((1)/(sqrt(2)))^(2)=((1)/(2)+(1)/(2))=1`. `rArr" "(a^(2)+b^(2)) = 1`. Hence, `(a^(2)+b^(2))=1`. |
|