1.

If sum of n terms of an AP is 5n2-3n, then sum of its 100th term is 

Answer»

\(\sum_{i=1}^n \) ai = 5n2 - 3n

= 5n2 + 5n - 8n

= 10\(\big(\frac{n^2+n}{2}\big)\)- 8n

=10 \(\sum_{i=1}^n \) i - 8 \(\sum_{i=1}^n \)1

\(\sum_{i=1}^n \)(10 i -8)

ith term of sequence = 10i - 8

100th term of sequence = 1000-8 = 992

Sum of digits = 9 + 9 + 2 = 20



Discussion

No Comment Found