InterviewSolution
Saved Bookmarks
| 1. |
If `sum_(r=1)^(r=n)(r^(4)+r^(2)+1)/(r^(4)+r)=(675)/(26)`, then `n` equal toA. `10`B. `15`C. `25`D. `30` |
|
Answer» Correct Answer - C `(c )` `T_(e)=(r^(4)+r^(2)+1)/(r^(4)+r)=((r^(2)+r+1)(r^(2)-r+1))/(r(r+1)(r^(2)-r+1))=(r^(2)+r+1)/(r(r+1))` `T_(r)=1+(1)/(r )-(1)/(r+1)` `T_(1)=1+(1)/(1)-(1)/(2)` `T_(2)=1+(1)/(2)-(1)/(3)` `T_(3)=1+(1)/(3)-(1)/(4)` ……………….. `T_(n)=1+(1)/(n)-(1)/(n+1)` `:.S_(n)=n+1-(1)/(n+1)=(675)/(26)` `:.26(n+1)^(2)-26=675(n+1)` `implies26(n+1)^(2)-675(n+1)-26=0` `implies26(n+1)[n+1-26]+[(n+1)-26]=0` `implies(n-25)(26n-27)=0` `:. n=25` |
|