1.

If `tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi` prove that `x+y+z=xyz`

Answer» `tan^(-1) x + tan ^(-1) y + tan ^(-1)z =pi `
`rArr " "tan^(-1).(x+y)/(1-xy) + tan^(-1) z = pi`
`tan^(-1) .((x+y)/(1-xy))/(1-(x+y)/(1-xy)z)`
`rArr (x+y +z(1-xy))/(1-xy -(x+y)z)= tan pi =0`
`rArr " m " x+y + z -xyz =0`
`rArr" "x +y + z =xyz`


Discussion

No Comment Found