InterviewSolution
Saved Bookmarks
| 1. |
If `tan^-1x, tan^-1y` and `tan^-1z` are in A.P. then find the algebraic relation between x,y and z. If `x,y,z` are also in A.P. then show that `x=y=z` and `y!=0`A. x=y=zB. xy=yzC. `x^(2)=yz`D. `z^(2)=xy` |
|
Answer» Correct Answer - A We have, x,y,z are in A.P. `rArr" "2y=x+z` . . .(i) Also, `tan^(-1)xtan^(-1)z` are in A.P. `rArr" "2tan^(-1)y=tan^(-1)x+tan^(-1)z` `rArr" "tan^(-1)((2y)/(1-y^(2)))=tan^(-1)((x+z)/(1-xz))` `rArr" "(2y)/(1-y^(2))=(x+z)/(1-xz)` `rArr" "1-y^(2)=1-xz" [Using (i)]"` `rArr" "y^(2)=xz` `rArr" "` x,y,z are in G.P. . . . (ii) From (i) and (ii), we get, x=y=z |
|