InterviewSolution
Saved Bookmarks
| 1. |
If tan A = \(\frac{a}{a+1}\) and tan B = \(\frac{1}{2a+1}\), then find the value of A + B. |
|
Answer» We know that, tan (A + B) = \(\frac{tan\,A+tan\,B}{1-tan\,A\,tan\,B}\) ∴ tan(A + B) = \(\frac{\frac{a}{a+1}+\frac{1}{2a+1}}{1-(\frac{a}{a+1})(\frac{1}{2a+1})}\) ⇒ tan(A + B) = \(\frac{a(2a+1)+(a+1)}{(a+1)(2a+1)-a}\) ⇒ tan(A + B) = \(\frac{2a^2+2a+1}{2a^2+2a+1}\) ⇒ tan(A + B) = 1 ⇒ tan(A + B) = tan \((\frac{x}{4})\) ⇒ A + B = \(\frac{x}{4}\) |
|