1.

If tan θ = \(\frac{a}{b}\), prove that \(\frac {a sin\, θ - b cos\, θ}{a sin\, θ + b cos\, θ}\) = \(\frac{a^2 - b^2}{a^2 + b^2}\).

Answer»

Given, tan θ = \(\frac{a}{b}\)

\(\frac {a sin\, θ - b cos\, θ}{a sin\, θ + b cos\, θ}\)

From LHS, let’s divide the numerator and denominator by cos θ. 

And we get, 

\(\frac{(a\, tan\, θ\, –\, b)}{(a\, tan\, θ\, +\, b\,) }\)

\(\frac{(a(a/b) – b)}{(a(a/b) + b)}\) [using the value of tan θ] 

\(\frac{(a^2 – b^2)}{b^2} \over \frac{(a^2 + b^2)}{b^2}\) [After taking LCM and simplifying it] 

\(\frac{(a^2 – b^2)}{(a^2 + b^2)}\) = RHS

Hence Proved



Discussion

No Comment Found