InterviewSolution
Saved Bookmarks
| 1. |
If tan2x° = cot(x+6)°, then find the value of x?1. 44° 2. 25° 3. 38° 4. 28° |
|
Answer» Correct Answer - Option 4 : 28° Given: tan2x° = cot(x+6)° Concept used: tan(90° - θ) = cotθ Calculation: tan2x° = cot(x+6)° ⇒ tan2x° = tan[90° - (x+6)°] [tan(90° - θ) = cotθ] ⇒ 2x° = 90° - (x+6)° ⇒ 2x° = 90° - x° - 6° ⇒ 3x° = 84° ⇒ x = 28° ∴ The value of x is 28°. |
|