1.

If tan2x° = cot(x+6)°, then find the value of x?1. 44° 2. 25° 3. 38° 4. 28°

Answer» Correct Answer - Option 4 : 28° 

Given:

 tan2x° = cot(x+6)°

Concept used:

tan(90° - θ) = cotθ 

Calculation:

 tan2x° = cot(x+6)°

⇒  tan2x° = tan[90° - (x+6)°]                           [tan(90° - θ) = cotθ]

⇒ 2x° = 90° - (x+6)°

⇒ 2x° = 90° - x° - 6° 

⇒ 3x° = 84° 

⇒ x = 28° 

∴ The value of x is 28°.



Discussion

No Comment Found

Related InterviewSolutions