1.

If tanθ + sinθ = m and tanθ – sinθ = n, then prove that m2 – n2 = 4sinθ tanθ

Answer»

We have, tanθ + sinθ = m ...... (i)

And tanθ -sinθ = n .......... (ii)

Now, m + n = 2 tanθ

And m – n = 2 sinθ.

(m + n)(m -n) = 4 sinθtanθ

 m2 -n2 = 4 sinθtanθ



Discussion

No Comment Found