1.

If the area of the parallelogram formed by the lines 2x - 3y + a = 0 , 3x - 2y - a = 0 , 2x - 3y + 3a = 0 and 3x - 2y - 2a = 0 is 10 square units , then a =A. `pm1`B. `pm` 10C. `pm` 5D. none of these

Answer» Correct Answer - C
We know that the area of the parallelogram formed by the lines `a_(1)x + b_(1)y + c_(1) = 0 , a_(2)x + b_(2)y+ c_(2) = 0 , a_(1) x + b_(1) y + d_(1) = 0` and `a_(2)x + b_(2)y + d_(2) = 0 ,` is
`|((c_(1) - d_(1)) (c_(2) - d_(2)))/ ({:(a_(1), b_(1)), (a_(2) , b_(2)):}) |`
`therefore |((3a-a) xx(-2a + a))/ ({:(2, -3), (3 , -2):}) | = 10 implies (2a^(2))/(5) = 10 implies a pm 15`


Discussion

No Comment Found

Related InterviewSolutions