

InterviewSolution
Saved Bookmarks
1. |
If the coefficient of `x^7` in `(ax^2+1/(bx))^11` is equal to the coefficient of `x^7` in `(ax-1/(bx^2))^11` thenA. `a+b=1`B. `a-b=1`C. `ab=1`D. `a/b=1` |
Answer» Correct Answer - C For `(ax^(2)+(1/(bx)))^(11)`. `T_(r+1)=.^(13)C_(r)(ax^(2))^(11-r)(1/(bx))^(r) = .^(11)C_(r ) a^(11-r) (1)/(b^(r)) x^(22-3r)` For `x^(7)`, `22-3r = 7` or `3r = 15` or `r = 5` `rArr T_(6) = .^(11)C_(5)a^(6)(1)/(b^(5)) x^(7)` `rArr` Coefficient of `x^(7)` is `.^(11)C_(5) (a^(6))/(b^(5))` Similarly, coefficient of `x^(-7)`in `(ax- (1/(bx^(2))))^(11)` is `.^(11)C_(6)(a^(5))/(b^(6))`. Given that `.^(11)C_(5) (a^(6))/(b^(5)) = .^(11)C_(6) (a^(5))/(b_(6))` `rArr a= 1/b` or `ab = 1` |
|