InterviewSolution
Saved Bookmarks
| 1. |
If the curves `y= a^(x) and y=e^(x)` intersect at and angle `alpha, " then " tan alpha` equalsA. `|(log_(e)a)/(1+log_(e)a)|`B. `|(1+log_(e)a)/(1+log_(e)a)|`C. `|(log_(e)a-1)/(log_(e)a+1)|`D. none of these |
|
Answer» Correct Answer - C The equations of the two curves are ` C_(1): y=a^(x) " " …(i) and C_(2) : y=e^(x) " " ` …(ii) At the point of intersection of these two curves, we must have `a^(x)=e^(x) rArr ((a)/(e))^(x)=1 rArr x =0` Putting `x=0` in any one of the two curves, we get y = 1. Thus, the two curves intersect at P(0, 1). Clearly, at the point P(0, 1) `((dy)/(dx))_(C_(1))=log_(e) a and ((dy)/(dx))_(C_(2))=1` `therefore tan alpha = |(((dy)/(dx))_(C_(1))-((dy)/(dx))_(C_(2)))/(1+((dy)/(dx))_(C_(1))xx((dy)/(dx))_(C_(2)))|rArr tan alpha =|(log_(e)a -1)/(log_(e)a+1)|` |
|