1.

If the equation 2ksinx + 7 = 4k - cos2x possesses a solution for k E [a, b], then (a + b) is equal to​

Answer» EQUATION 2ksinx + 7 = 4k – cos2x possesses a  SOLUTION for k ∈ [a , b] To Find : (a + b)  valueSolution:2ksinx  + 7 = 4k - cos2x=> 2ksinx  + 7 = 4k - (1- 2sin²x)=> 2ksinx + 7 = 4k - 1 + 2sin²x=> 2sin²x  - 2ksinx  + 4k  - 8  = 0=>  sin²x  -  ksinx  + 2K  - 4 = 0 Sinx =  (k  ± √(k² - (4(2k-4)) ) /2=> Sinx =  (k  ± √(k² - 8k + 16  ) /2 => Sinx =  (k  ± √(k - 4)²  ) /2=> Sinx =  (k + k - 4) /2  , ( k - k + 4)/2 => sinx = (2k - 4)/2 ,        2  ( not possible)=> sinx =  k - 2sinx  RANGE = - 1  to  1=> k  =  1  to 3 k ∈ [1 , 3] a + b = 1 + 3  =  4(a + b) is equal to​ 4Learn More:brainly.in/question/27336693Solve the equation √3 sin x - cos x = √2 - Brainly.in brainly.in/question/2607997


Discussion

No Comment Found

Related InterviewSolutions