InterviewSolution
Saved Bookmarks
| 1. |
If the equation `tan (P cot x)=cot (P tan x)` has a solution in `x in (0, pi)-{pi/2}`, then prove that `P le pi/4`. |
|
Answer» `tan (P cot x)=cot (P tan x)` or `tan (P cot x)= tan (pi/2 - P tan x)` or `P cot x=pi/2-P tan x` or `P(tan x+ cot x) = pi/2` where `P gt 0` Now. `tan x+ cot x ge 2` or `2P le P (tan x+ cot x) = pi/2 or P le pi/4` |
|