InterviewSolution
Saved Bookmarks
| 1. |
If the equations of two lines L1 and L2 are \(\vec{r}=\vec{a_1}+λ\vec{b_1}\) and \(\vec{r}=\vec{a_2}+μ\vec{b_2}\), then which of the following is the correct formula for the angle between the two lines?(a) cosθ=\(\left |\frac{\vec{a_1}.\vec{a_2}}{|\vec{b_1}||\vec{a_2}|}\right |\)(b) cosθ=\(\left |\frac{\vec{a_1}.\vec{a_2}}{|\vec{a_1}||\vec{a_2}|}\right |\)(c) cosθ=\(\left |\frac{\vec{b_1}.\vec{b_2}}{|\vec{b_1}||\vec{b_2}|}\right |\)(d) cosθ=\(\left |\frac{\vec{a_1}.\vec{b_2}}{|\vec{a_1}||\vec{b_2}|}\right |\)I got this question at a job interview.Query is from Three Dimensional Geometry topic in section Three Dimensional Geometry of Mathematics – Class 12 |
|
Answer» The correct option is (c) cosθ=\(\left |\frac{\VEC{b_1}.\vec{b_2}}{|\vec{b_1}||\vec{b_2}|}\right |\) |
|