1.

If the height of two riight circular Cylinders arein the ration 3:4 and perimeters are in the ratio1:2 then find the ratio of their volumes.​

Answer»

Answer:

RATIO of the height = \frac{3h}{4h}

i.e height of cylinder_{1} = H = 3h

     height of cylinder_{2} = H' = 4h

ratio of the PERIMETER = \frac{1p}{2p}

e.i perimeter of cylinder_{1} = 1p

    2\pi rH = p

     2\pi r(3h) = p

     6\pi rh = p

    perimeter of cylinder_{2} = 2p

    2\pi r'H' = 2p

    2\pi r'(4h) = 2p

    8\pi r'h = 2p

=> \frac{6\pi rh }{8\pi r'h } = \frac{p}{2p}

=> \frac{6\pi rh }{8\pi r'h } = \frac{1}{2}

=> \frac{3r}{4r' } = \frac{1}{2}

=> \frac{r}{r' } = \frac{2}{3}

ratio of the radius = \frac{2R}{3R}

i.e radius of cylinder_{1} = 2R

    radius of cylinder_{2} = 3R

ratio of volume = \frac{V_{1} }{V_{2} }

i.e V_{1} = \pi r^{2} H

          = \pi (2R)^{2}(3h)

          = 12\pi R^{2}h

    V_{1} = \pi r'^{2} H'

          = \pi (3R)^{2}(4h)

          = 36 \pi R^{2}h

Ratio of the volume  = \frac{ 12\pi R^{2}h}{36 \pi R^{2}h}

                                  = \frac{ 12}{36}

                                  = \frac{1}{3}

   

     



Discussion

No Comment Found

Related InterviewSolutions