

InterviewSolution
1. |
If the lines x + 2y + 1 = 0, 8x + 12y + k = 0, 3x - 2y + 5 = 0 are concurrent, then the value of k is:1. 112. 53. 94. 7 |
Answer» Correct Answer - Option 3 : 9 Concept: If a1x + b1y + c1 = 0, a2x + b2y + c2 = 0 and a3x + b3y + c3 = 0 are 3 lines then these lines are said to be concurrent if: \(\left| {\begin{array}{*{20}{c}} {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}}\\ {{a_3}}&{{b_3}}&{{c_3}} \end{array}} \right| = 0\) Calculation: Given: the lines x + 2y + 1 = 0, 8x + 12y + k = 0 and 3x - 2y + 5 = 0 are concurrent. Now, by comparing the three lines with the standard equation of line ax + by + c = 0 we get: ⇒ a1 = 1, b1 = 2, c1 = 1, a2 = 8, b2 = 12, c2 = k, a3 = 3, b3 = -2 and c3 = 5. As we know that, if a1x + b1y + c1 = 0, a2x + b2y + c2 = 0 and a3x + b3y + c3 = 0 are 3 lines then these lines are said to be concurrent if: \(\left| {\begin{array}{*{20}{c}} {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}}\\ {{a_3}}&{{b_3}}&{{c_3}} \end{array}} \right| = 0\) \(\Rightarrow \;\left| {\begin{array}{*{20}{c}} {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}}\\ {{a_3}}&{{b_3}}&{{c_3}} \end{array}} \right| = \left| {\begin{array}{*{20}{c}} 1&2&{1}\\ 8&{12}&k\\ 3&-2&{5} \end{array}} \right| \) = 1(60 + 2k) - 2(40 - 3k) + (-16 - 36) = 0 ⇒ 60 + 2k - 80 + 6k - 52 = 0 8k = 72 k = 9 |
|