1.

If the matrix A = \(\begin{bmatrix}5 &2 & x \\[0.3em]y & z &-3 \\[0.3em]4 & t & -7\end{bmatrix}\) is a symmetric matrix, find x, y, z and t.

Answer»

Given, 

A = \(\begin{bmatrix}5 &2 & x \\[0.3em]y & z &-3 \\[0.3em]4 & t & -7\end{bmatrix}\) is a symmetric matrix.

We know that,

A = [aij]m x n is a symmetric matrix if aij = aji

So,

x = a13 = a31 = 4

y = a21 = a12 = 2

z = a22 = a22 = z

t = a32 = a23 = - 3

Hence, 

X = 4, y = 2, t = - 3 and z can have any value.



Discussion

No Comment Found

Related InterviewSolutions