

InterviewSolution
Saved Bookmarks
1. |
If the matrix A = \(\begin{bmatrix}5 &2 & x \\[0.3em]y & z &-3 \\[0.3em]4 & t & -7\end{bmatrix}\) is a symmetric matrix, find x, y, z and t. |
Answer» Given, A = \(\begin{bmatrix}5 &2 & x \\[0.3em]y & z &-3 \\[0.3em]4 & t & -7\end{bmatrix}\) is a symmetric matrix. We know that, A = [aij]m x n is a symmetric matrix if aij = aji So, x = a13 = a31 = 4 y = a21 = a12 = 2 z = a22 = a22 = z t = a32 = a23 = - 3 Hence, X = 4, y = 2, t = - 3 and z can have any value. |
|