1.

If the mean and variance of the observations x_(1), x_(2), x_(3),…,x_(n) are barx and sigma^(2) respectively and a be a nonzero real number, then show that the mean and variance of ax_(1),ax_(2),ax_(3),…,ax_(n)" are "abarx and a^(2) sigma^(2) respectively.

Answer»

Solution :Let `barx` be the mean of `x_(1),x_(2),x_(3),x_(n)` and a be nonzero real number.
Then, `barx=(1)/(n)(x_(1)+x_(2)+x_(3)+ +x_(n)).`
Let `y_(i)=ax_(i)" for each i=1, 2, 3,n. Then",`
`bary=(1)/(n)(y_(1)+y_(2)+y_(3)+...+y_(n))`
`=(1)/(n)(ax_(1)+ax_(2)+ax_(3)+ +ax_(n))=acdot(1)/(n)(x_(1)+x_(2)+x_(3)+...+x_(n))=abarx.`
Thus, `bary=a barx.`
Now, the variance of new observations is given by
`"variance "(y)=sigma_(1)^(2)`
`=(1)/(n)cdotoverset(n)underset(i=1)Sigma(y_(i)-bary)^(2)`
`=(1)/(n)CDOT overset(n)underset(i=1)Sigma(ax_(i)-abarx)^(2)" "[because y_(i)=ax_(i)" for each i and "bary=abarx]`
`=a^(2)cdot(1)/(n)cdotoverset(n)underset(i=1)Sigma(x_(i)-barx)^(2)`
`=a^(2)cdot{"variance"(x)}=a^(2)sigma^(2).`
`THEREFORE" new variance"=a^(2)sigma^(2).`
`"REMARK "sigma_(1)=SQRT(a^(2)sigma^(2))=|a|cdot sigma.`


Discussion

No Comment Found