Saved Bookmarks
| 1. |
If the point `(2a,a)` lies inside the parabola `x^(2) -2x - 4y +3 = 0`, then a lies in the intervalA. `[(1)/(2),(3)/(2)]`B. `((1)/(2),(3)/(2))`C. `(1,3)`D. `((-3)/(2),(-1)/(2))` |
|
Answer» Correct Answer - B The parabola is `(x-1)^(2) =4 (y-(1)/(2))` and origin lies outside the parabolic region, (0,0) makes `x^(2) - 2x - 4y +3` positive. `:. (2a,a)` should make `x^(2) -2x -4y +3` negative i.e., `4a^(2) - 8a + 3 lt 0` `rArr (2a-1) (2a-3) lt 0` Thus, a belongs to the open interval `((1)/(2),(3)/(2))`. |
|