InterviewSolution
Saved Bookmarks
| 1. |
If the point `P(3,4)` is equidistant from the points `A(a+b,b-a` and `B(a-b,a+b)`, then prove that `3b-4a=0` |
|
Answer» `AP^2=(a+b-3)^2+(b-a-4)^2` `=(a+b)^2-6(a+b)+a+(b-a)^2-8(b-a)+16` `BP^2=(a-b-3)^2+(a+b-4)^2` `=(a-b)^2-6(a-b)+a+(a+b)^2-8(a+b)+16` `AP=BP` `AP^2=BP^2` `-6(a+b)-8(b-a)=-6(a-b)-8(a+b)` `8(a+b-b+a)+6(a-b-a-b)=0` `16a-12b=0` `3b-4a=0`. |
|